Dynamic stiffness formulation for a micro beam using Timoshenko–Ehrenfest and modified couple stress theories with applications

نویسندگان

چکیده

Several models within the framework of continuum mechanics have been proposed over years to solve free vibration problem micro beams. Foremost amongst these are those based on non-local elasticity, classical couple stress, gradient elasticity and modified stress theories. Many retain basic features Bernoulli–Euler or Timoshenko–Ehrenfest theories, but they introduce one more material scale length parameters tackle problem. The work described in this paper deals with problems beams dynamic stiffness method, through implementation theory conjunction theory. main advantage is that unlike other models, it uses only parameter account for smallness structure. current research accomplished first by solving governing differential equations motion a beam closed analytical form. matrix then formulated relating amplitudes forces corresponding displacements at ends beam. applied using Wittrick–Williams algorithm as solution technique investigate characteristics Natural frequencies mode shapes several examples presented, effects demonstrated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis of FG Micro-Beam Based on the Third Order Shear Deformation and Modified Couple Stress Theories

In this paper, free vibration analysis and forced vibration analysis of FG doubly clamped micro-beams is studied based on the third order shear deformation and modified couple stress theories. The size dependent dynamic equilibrium equations and both the classical and non-classical boundary conditions are derived using a variational approach. It is assumed that all properties of the FG micro-be...

متن کامل

Free Vibration Analysis of Sandwich Micro Beam with Piezoelectric Based on Modified Couple Stress Theory and Surface Effects

In this paper, the free vibration analysis of sandwich micro beam with piezoelectric layers based on the modified couple stress and surface elasticity theories are investigated. The Hamilton’s principle is employed to derive the sandwich micro beam with piezoelectric based on modified couple stress theory incorporating with Gurtin- Murdoch surface theory. The generalized differential quadrature...

متن کامل

Thermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory

In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...

متن کامل

A Size-dependent Bernoulli-Euler Beam Formulation based on a New Model of Couple Stress Theory

In this paper, a size-dependent formulation for the Bernoulli-Euler beam is developed based on a new model of couple stress theory presented by Hadjesfandiari and Dargush. The constitutive equation obtained in this new model, consists of only one length scale parameter that is capable of capturing the micro-structural size effect in predicting the mechanical behavior of the structure. Having on...

متن کامل

Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory

In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Vibration and Control

سال: 2021

ISSN: ['1077-5463', '1741-2986']

DOI: https://doi.org/10.1177/10775463211048272